Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 203: 108084, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37832370

RESUMO

Brassica rapa L. (2n = 20; AA) is a vegetable and oilseed crop that is grown all over the world. Its leaves, shoots, and seeds store significant amounts of minerals. We used inductively coupled plasma-optical emission spectroscopy (ICP-OES) to determine the concentrations of eleven minerals in the leaves and seeds of 195 advanced generation inbred lines, of which 92 represented natural (NR) B. rapa and the remaining 103 were derived (DR) from a set of mother genotypes originally extracted from an allotetraploid B. juncea (2n = 36; AABB). The inbred lines differed for the composition of leaf and seed minerals. Leaf concentrations of N, K, Zn, and Se were higher in the DR subpanel as compared to NR subpanel, along with high seed accumulations of K and Se. DArT genotyping and genome wide association mapping led to the identification of SNPs associated with leaf and seed mineral compositions. Chromosomes A03, A05, and A10 harboured the most associated loci. Annotations of the regions adjacent to respective GWAS peaks allowed prediction of genes known for acquisition, transport, and accumulation of minerals and heavy metal detoxification. Transcriptome analysis revealed differential expression patterns of the predicted candidates, with most genes either down-regulated in derived genotypes relative to natural forms or their expression being comparable between the two. General downregulation may be a consequence of extracting B. rapa from allotetraploid B. juncea through genome resection. Some of the identified SNPs may be used as DNA markers for breeding programmes designed to modify the leaf and seed mineral compositions.


Assuntos
Brassica rapa , Brassica rapa/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Folhas de Planta/genética , Sementes/genética , Minerais
2.
Heliyon ; 9(9): e19237, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674843

RESUMO

Identifying the molecular and genetic basis of resistance to Sclerotinia stem rot (Sclerotinia sclerotiorum) is critical for developing long-term and cost-effective management of this disease in rapeseed/canola (Brassica napus). Current cultural or chemical management options provide, at best, only partial and/or sporadic control. Towards this, a B. napus breeding population (Mystic x Rainbow), including the parents, F1, F2, BC1P1 and BC1P2, was utilized in a field study to determine the inheritance pattern of Sclerotinia stem rot resistance (based on stem lesion length, SLL). Broad sense heritability was 0.58 for SLL and 0.44 for days to flowering (DTF). There was a significant negative correlation between SLL and stem diameter (SD) (r = -0.39) and between SLL and DTF (r = -0.28), suggesting co-selection of SD and DTF traits, along with SLL, should assist in improving overall resistance. Non-additive genetic variance was evident for SLL, DTF, and SD. In a genome wide association study (GWAS), a significant quantitative trait locus (QTL) was identified for SLL. Several putative candidate marker trait associations (MTA) were located within this QTL region. Overall, this study has provided valuable new understanding of inheritance of resistance to S. sclerotiorum, and has identified QTL, MTAs and transgressive segregants with high-level resistances. Together, these will foster more rapid selection for multiple traits associated with Sclerotinia stem rot resistance, by enabling breeders to make critical choices towards selecting/developing cultivars with enhanced resistance to this devastating pathogen.

3.
Plant Dis ; 106(1): 127-136, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34340556

RESUMO

Sclerotinia sclerotiorum is a necrotrophic fungus causing devastating stem rot and associated yield losses of canola/rapeseed (Brassica napus) worldwide, including in Australia. Developing host resistance against Sclerotinia stem rot is critical if this disease in canola/rapeseed is to be successfully managed, as cultural or chemical control options provide only partial or sporadic control. Three B. napus breeding populations, C2, C5 and C6, including the parents, F1, F2, BC1P1, and BC2P2, were used in a field study with an objective of exploring the inheritance pattern of disease resistance (based on stem lesion length [SLL]) and the genetic relationships of disease with stem diameter (SD) or days to first flowering (DTF), and to compare these new adult plant stem resistances against S. sclerotiorum with those of seedling (cotyledon and leaf) resistances in earlier studies. Heritability (broad sense) of SLL was 0.57 and 0.73 for population C2 at 3 and 5 weeks postinoculation and 0.21 for population C5 at 5 weeks postinoculation. Additive genetic variance was evident within all 3 populations for DTF but not for SD. Narrow-sense heritability for DTF was 0.48 (C2), 0.42 (C5), and 0.32 (C6). SD, DTF, and SLL were all inherited independently, with no significant genetic covariance between traits in bivariate analysis. Genetic variance for SLL in populations C2 and C5 was entirely nonadditive, and there was significant nonadditive genetic covariance of SLL at 3 and 5 weeks postinoculation. Generation means analysis in population C2 supported the conclusion that complex epistatic interactions controlled SLL. Several C2 and C5 progeny showed high adult plant stem resistance, which may be critical in developing enhanced stem resistance in canola/rapeseed. Although population C6 showed no genetic variation for SLL resistance in this study, it showed significant nonadditive genetic variance at the cotyledon and leaf stages in earlier studies. We conclude that host resistance varies across different plant growth stages, and breeding must be targeted for resistance at each growth stage. In populations C2, C5, and C6, resistance to S. sclerotiorum in stem, leaf, and cotyledon was always controlled by nonadditive effects such as complex epistasis or dominance. Overall, our findings in relation to the quantitative inheritance of Sclerotinia stem rot resistance, together with the new high-level resistances identified, will enable breeders to select/develop genotypes with enhanced resistances to S. sclerotiorum.


Assuntos
Ascomicetos , Brassica napus , Brassica napus/genética , Cotilédone , Padrões de Herança , Melhoramento Vegetal , Doenças das Plantas/genética , Folhas de Planta/genética , Caules de Planta/genética
4.
Plant Mol Biol ; 105(1-2): 161-175, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32997301

RESUMO

KEY MESSAGE: Genome wide association studies allowed prediction of 17 candidate genes for association with nitrogen use efficiency. Novel information obtained may provide better understanding of genomic controls underlying germplasm variations for this trait in Indian mustard. Nitrogen use efficiency (NUE) of Indian mustard (Brassica juncea (L.) Czern & Coss.) is low and most breeding efforts to combine NUE with crop performance have not succeeded. Underlying genetics also remain unexplored. We tested 92 SNP-genotyped inbred lines for yield component traits, N uptake efficiency (NUPEFF), nitrogen utilization efficiency (NUTEFF), nitrogen harvest index (NHI) and NUE for two years at two nitrogen doses (No without added N and N100 added @100 kg/ha). Genotypes IC-2489-88, M-633, MCP-632, HUJM 1080, GR-325 and DJ-65 recorded high NUE at low N. These also showed improved crop performance under high N. One determinate mustard genotype DJ-113 DT-3 revealed maximum NUTEFF. Genome wide association studies (GWAS) facilitated recognition of 17 quantitative trait loci (QTLs). Environment specificity was high. B-genome chromosomes (B02, B03, B05, B07 and B08) harbored many useful loci. We also used regional association mapping (RAM) to supplement results from GWAS. Annotation of the genomic regions around peak SNPs helped to predict several gene candidates for root architecture, N uptake, assimilation and remobilization. CAT9 (At1g05940) was consistently envisaged for both NUE and NUPEFF. Major N transporter genes, NRT1.8 and NRT3.1 were predicted for explaining variation for NUTEFF and NUPEFF, respectively. Most significant amino acid transporter gene, AAP1 appeared associated with NUE under limited N conditions. All these candidates were predicted in the regions of high linkage disequilibrium. Sequence information of the predicted candidate genes will permit development of molecular markers to aid breeding for high NUE.


Assuntos
Mostardeira/genética , Mostardeira/metabolismo , Nitrogênio/metabolismo , Genes de Plantas , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
Front Genet ; 11: 744, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088279

RESUMO

Indian mustard (Brassica juncea) is a major source of vegetable oil in the Indian subcontinent. The seed cake left after the oil extraction is used as livestock feed. We examined the genetic architecture of oil, protein, and glucosinolates by conducting a genome-wide association study (GWAS), using an association panel comprising 92 diverse genotypes. We conducted trait phenotyping over 2 years at two levels of nitrogen (N) application. Genotyping by sequencing was used to identify 66,835 loci, covering 18 chromosomes. Genetic diversity and phenotypic variations were high for the studied traits. Trait performances were stable when averaged over years and N levels. However, individual performances differed. General and mixed linear models were used to estimate the association between the SNP markers and the seed quality traits. Population structure, principal components (PCs) analysis, and discriminant analysis of principal components (DAPCs) were included as covariates to overcome the bias due to the population stratification. We identified 16, 23, and 27 loci associated with oil, protein, and glucosinolates, respectively. We also established LD patterns and haplotype structures for the candidate genes. The average block sizes were larger on A-genome chromosomes as compared to the B- genome chromosomes. Genetic associations differed over N levels. However, meta-analysis of GWAS datasets not only improved the power to recognize associations but also helped to identify common SNPs for oil and protein contents. Annotation of the genomic region around the identified SNPs led to the prediction of 21 orthologs of the functional candidate genes related to the biosynthesis of oil, protein, and glucosinolates. Notable among these are: LACS5 (A09), FAD6 (B05), ASN1 (A06), GTR2 (A06), CYP81G1 (B06), and MYB44 (B06). The identified loci will be very useful for marker-aided breeding for seed quality modifications in B. juncea.

6.
Mol Biol Rep ; 46(4): 4235-4244, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31115836

RESUMO

Nitrogen (N) is a critical input for plant growth and development. A better understanding of N uptake and utilization is important to develop plant breeding strategies for improving nitrogen use efficiency (NUE). With that objective in mind, we assayed a SNP-genotyped association panel comprising 92 inbred lines for the activities of nitrate reductase (NR), nitrite reductase (NIR), glutamine synthetase (GS) and glutamate synthase (GOGAT). All these enzymes are associated with N assimilation. The experiments were carried out at two levels of N application: no added N (N0) and agrnomically recommened dose (100 kg/ha) of N application (N100). Genome wide association studies (GWAS) helped to identify several marker-trait associations (MTAs), involving chromosomes A01, A06, A08, B02, B04, B05 and B08. These explained high phenotypic variation (up to 32%). Annotation of the genomic region(s) in or around significant SNPs allowed prediction of genes encoding high affinity nitrate transporters, glutamine synthetase 1.3, myb-like transcription factor family protein, bidirectional amino acid transporter 1, auxin signaling F-box 3 and oxidoreductases. This is the first attempt to use GWAS for identification of enzyme QTLs to explain variation for nitrogen assimilation enzymes in Brassica juncea.


Assuntos
Mostardeira/enzimologia , Mostardeira/genética , Nitrogênio/metabolismo , Proteínas de Transporte de Ânions/genética , Transporte Biológico/genética , Estudo de Associação Genômica Ampla/métodos , Glutamato Sintase/genética , Glutamato Sintase/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Transportadores de Nitrato , Nitrito Redutases/genética , Nitrito Redutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...